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J.  Phys. A: Math. Gen. 15 (1982) 985-999. Printed in Great Britain 

The configurational properties of topologically entangled 
molecules 

M G Brereton and S Shah? 
Department of Physics, University of Leeds, Leeds LS2 9JT, England 

Received 11 September 1981 

Abstract. The statistical mechanical problem of two polymer molecules subject to a linking 
number constraint is solved in the so-called ‘pre-averaged approximation’, whereby a 
function of the coordinates of one of the molecules is replaced by its averaged value. For 
this molecule a critical winding number &(L, s) can be identified, depending on the total 
length L of the molecules and the arc length scale s over which the configurational 
properties are being investigated. We find that mc-N3/4(L/s)”4 and that for winding 
numbers m < m,(L, L) the original entropy of the chain still dominates and the configura- 
tion remains approximately Gaussian. For m > m,(L, L), the constraint dominates and we 
present evidence to suggest that a partially collapsed solenoidal-like state is adopted, but 
one which is nevertheless still a Gaussian random coil on a smaller arc length scale s < s*, 
with s* =L(m,/m)4. 

1. Introduction 

The unusual properties of polymer molecules are a direct result of their chain-like 
molecular structure which provides the molecules with a vast reserve of conformational 
entropy. This chain structure can also give rise to another unique feature, that of 
topologically entangled molecules (figures l(a), (b) ) .  Clearly the centre of mass of each 
molecule is restricted as are the configurational degrees of freedom. The two molecules 
depicted in figure l(a) cannot adopt the configuration of those in figure 1(b) without 
breaking their chemical bonds. This restriction in the entropic content of each molecule 
will modify the physical properties of the molecules, particularly in the concentrated 
polymeric state where many topological entanglements can be formed. The term 
‘entanglement’ has been used by many authors to describe the rather general restric- 
tions on configurational changes that occur in long chain molecules in a concentrated or 
molten state. For a comprehensive review see Graessley (1974). In this work we deal 
with the precise notion of a topological entanglement which describes a certain 
topological relation existing between the molecules, which is necessarily conserved 
throughout all the configurational changes that the molecule can undergo. Figure 1 
illustrates the difference between these two concepts. In figure l(c) the molecules, 
having free ends, can eventually be separated whereas in figures l(a),  ( b )  they cannot. 

If the molecules are sufficiently long for the ends not to matter, or the time period of 
the experiment short enough so that disentanglement does not take place, then the 
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I f f )  ( 6 )  I C )  

Figure 1. Topologically entangled molecules with winding numbers ( a )  one and (b) two. ( c )  
These molecules are not topologically entangled and winding numbers are not defined. 

situations depicted in figure 1 may all be described as ‘entangled’. Physically this 
situation is observed in dynamic mechanical measurements on polymer melts of linear 
polymers of different molecular weights, i.e. chain lengths (see e.g. Graessley 1974). 

In this paper we shall consider the simplest non-trivial problem of topologically 
entangled molecules, that of two closed loops. The statistical mechanics of this problem 
has been formulated in a previous paper (Brereton and Shah 1980) where an iso- 
morphism with a local gauge-invariant field theory was exhibited. It also contains 
references to the contributions of other authors on this subject. In this paper we shall 
present an approximate solution to the statistical mechanical problem without using the 
field theory formalism. A preliminary account of this work has already been given in 
Brereton and Shah (1981). 

2. The statistical weighting due to the topological constraint 

The criterion for deciding whether the two molecules, described by the space curves 
r,(s) and r&), are linked or not is partially provided by the Gauss integral (e.g. 
Alexandroff and Hopf 1935, Edwards 1967). 

where 4(s) = dr(s)/ds and s, t are arc length parameters. I,@ takes integer values m 
depending on the linking of the two curves. The linking number is only a first-order 
topological invariant and does not always distinguish between different topological 
configurations. Figure 2 gives a well known example of the failure of I,, as an invariant. 
Higher-order link invariants, such as the Alexander polynomials, can distinguish 
between the configurations of figures 2(a)  and 2(b)  (e.g. Vologodskii et al 1974). 
However, such invariants are algorithmic in nature and not suitable for the analytic 
approach adopted in the paper. 

The physical problem we are going to consider consists of evaluating the statistical 
average of some configurational property A{Ca} of, say, the C, molecule averaged over 
all the configurations of the C, and C, molecules subject to the constraint that the 
linking number between the two molecules is m, i.e. 

(2.2) (a(1up - m)A{Cu}){c,Hc~) 
( A )  = 

(6 ( Z P  - m ) ) { c u k e )  
* 
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I . p = O  

lo 1 

Figure 2. ( a )  The trivial link. ( b )  The whitehead link. 

By focusing attention on the configurational properties of only one of the molecules C,, 
we can attempt to perform the configurational average over the other molecule to 
obtain the effective weighting factor E{C,} 

E{ca } = (8 (14 {cm c@ - >){c& (2.3) 

The method was considered in detail in Brereton and Shah (1980). Essentially the 
constraint Ius = m is parametrised by 

and the following approximation is used 

(2.5) 

whereby I,@ is treated as a Gaussian random variable. 
The quantity (I:B)ice. is then evaluated on the basis that the statistical properties of 

bond vectors bi = ri+l - ri comprising the configuration of c@ are described by a 
Gaussian distribution function, i.e. 

1 2  2 (exp - igIUdIce) = exp - zg (14 ) I ~ ~ )  

(2.6) 
3 

P(b1,. . . , b N } n d b i o c e x p - ~ C b :  n d b i  
i 21 i i 

with (6:) = 1'. 
In the continuum limit this distribution goes over to the Wiener measure 

In our previous paper we showed that in the limit of L@ + 00 

(I&){ce}= w{ca1) 
=- ' 1 2  ds ds'i(s) T{r(s) - ~ ( S I ) }  e ~ ( S I )  24w f- 

where the tensor T(R) is given by 

1 T(R) = -(1 +RR/IRI*) 
IR I 

and p is the number density of the /3 monomers. 
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Hence we can write 
I e m  

E { C a } = L J  dg exp(igm-kg2W{C,}) 
2~ -m 

= ( 2 ~  W{C, I)-”* exp - km ’/ W{C, 1. (2.10) 

Thus the effect on the configuration C, of a topological entanglement with the chain C, 
resulting in a linking number m, is expressed by assigning the weight factor E{C,} to 
each configuration Ca. This gives a maximum weight to those configurations {Cx} for 
which W{C,* } = m2. Part of the expression for W{Ca} is familiar from electromag- 
netism. If only the unit tensor part of T, equation (2.9), is used then 

i ( s )  i ( s ’ )  
W{C,} = - 

lr (s) - r (s‘) I ’12  $ds ds’ 
2 4 ~  

(2.11) 

the integral part of which is essentially the inductance of a loop. This integral is 
divergent when r ( s ) = r ( s ’ ) ,  and in the electrical case the thickness of the wire is 
introduced to give a finite answer for the inductance. We may therefore anticipate the 
appearance of an extra parameter in our model in the form of a cut-off, corresponding in 
some sense to the thickness of the polymer. We shall relate it directly to the average 
entanglement number of the molecule. For solenoidal configurations, the inductance 
depends on the (number of turns)2. The weight factor (2.10) can clearly be optimised 
with a solenoidal configuration by adapting the linking number m to the number of 
turns of the solenoid. However, for polymer molecules this weight factor due to the 
topological constraint must be offset against the natural tendency of the molecule to 
adopt an essentially random walk configuration. It is competition between the demands 
of the linking number constraint and finding the most entropic configuration that 
constitutes the essence of the statistical mechanical problem. In the previous paper we 
transformed this into a local gauge invariant field theory. However in the next section 
of this paper we present an alternative approach based on an approximation familiar in 
the dynamics of polymer molecules in dilute solution: the so-called pre-averaged 
approximation. 

3. The generating function in the pre-averaged approximation 

In the previous section we established that, for two molecules mutually entangled with a 
linking number m, the average of some configurational property A{C,} is given by 

with W{C,} given by (2.8). If we choose 

A{C,}=expiA * { r n ( s l ) - r u ( s l ) }  

(3.1) 

(3.2) 

where si and s2 are any two points on the C, molecule, then all the configurational 
properties of interest can be generated from 

(3.3) 

The possible configurations of the C, molecule are generated, as before, by using a 
Gaussian distribution of step lengths (2.6). It is convenient to reparametrise the 

J(A,  sl, s2, m) = ( ( ~ T W ) - ” ~  exp-$m2/ W + A   SI) -r(s2)}) .  
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weighting factor in equation (3.3) by (2.10) so that the generating function can be 
written as 

J ( A  s1, s2,  m) 
dg exp igm J g{r) exp( -5 3 L  Jo i 2 ( s )  ds 

= J 2 ,  loops 

L L  L -- g2 - P l 2  1 ds j0 ds’ i ( s )  T ( r  - r‘) r ( s ’ )  + ih * Io ds i(s)$&)) (3.4) 
2 2 4 ~  0 

where 

s1< s e s2 

# 0 otherwise. 

The analytic problems posed by (3.4) are still intractable without further approxima- 
tion. The tensor T{r (s)  - r(s‘)}  also occurs in a different context in the hydrodynamics of 
polymer molecules and is known as the Oseen tensor (see Yamakawa 1971). In these 
problems considerable analytic progress can be made by means of the pre-averaging 
approximation whereby we replace 

W s )  - r (s ‘ ) )+  ( W s )  - r(s’))) 

= T ( s  -s’)l.  (3.5) 

For an unperturbed Gaussian distribution, the function T(s -s’)  has been calculated in 
appendix I, and we obtain 

Ideally the average occurring in these expressions should be self-consistently cal- 
culated. We shall discuss this point later; for the moment the principal feature of this 
approximation is that the part of (3.4) which involves the integration over all the 
configurations of the molecule can be written as 

L 

where 

(3.8) 1 2  3 h(t)=S(t)+gg pl T ( t ) / 2 4 ~ .  

The exponent in (3.7) can be diagonalised by a normal mode transformation after which 
the resulting Gaussian integral can be done. However the amount of algebra has also 
increased, and so various simplifying mathematical approximations have to be made. 
We have presented the details of this calculation in appendix 2. Using the results of 
appendix 2 we can write the generating function (3.3) as 

(3.9) 
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where 
1 1 -  p = bNp13 J n  v 2 ( ~ )  = - = J L I ~  

JN 
and a and b are numerical constants (3.10) 

a = -(27r) 27 312 b=(&)’/*: 
27r 

with N = L/l, and slZ being the arc length, appropriate for a loop, between the points sf 
and s2 

(3.11) 

The parameter d represents the small distance cut-off necessitated by the fact that we 
have used a mathematical curve of infinitesimal thickness to represent our model of the 
polymer molecule. In 8 2 we have already commented on the analogy of this calculation 
with the calculation of the inductance of a loop and how the latter depends on the 
thickness of the wire. The appearance of the cut-off parameter d is thus expected, and 
will depend on the local structure of the molecule rather than on any global property 
such as the molecular weight. 

It is interesting to compare the form of the generating function (3.9) with that 
obtained by a much more direct method-albeit as a result ot a gross approximation of 
the pre-averaged form of the tensor T 

(3.12) 

where c is a constant to be identified later. Then, the functional integral (3.7) can be 
written as 

s12 = (s1- s2)P - (s1 -sz)/Ll. 

(T{r(s) - r(s’)}) -5. c S(s - s’)l  

L L. {r}exp(-i (1+g2p13c) 1 IoLdsf2(s)+iA * lo i(s)&2(s)ds) (3.13) 

where all numerical constants have been incorporated into c. This functional integral is 
Gaussian with an effective step length of 1/(1+g2p13c). The path integral can be 
evaluated to give 

(1 +g21p3~)-3N/2 exp 

If we further approximate 
-3NI2 - (1 + g2p13c) - exp(-9+13c) 

then the generating function (3.4) can be written as 

(3.14) 

(3.15) 

(3.16) 

This result is similar to (3.9), obtained by detailed calculations in appendix 2. The 
major difference is that the constant c occurring in the third term of the exponential in 
(3.16) is replaced by 

(3.17) 
with 

p13c + [r2(~12)3-1  = T ~ f i i G J E  

K = (1/2T)3/2&p13 
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and the constant c occurring in the second term of the exponential being replaced by 

-+ &1/2.rr)3/2md. (3.18) 

In the next section we shall use the generating function (3.9) to derive and discuss the 
various configurational properties of the molecule. We shall also obtain a macroscopic 
representation of the small distance cut-off parameter d. 

4. Configurational properties of entangled molecules 

4.1. Entanglement probability distribution function 

The probability p(m) of finding two polymer molecules mutually entangled with a 
winding number m is given by 

(4.1) p(m) = ( W a d C a ,  C B I -  mI){CJ,{cB) 

and in terms of the generating function (3.3) 

p(m) = J W ,  SI, s2, m)lA=o. 

Using equation (3.16) for J we have that 
(4.2) 

= (212~) -”~  exp- m2/2p. (4.3) 
Consequently we can immediately identify p as the average (winding number)2 

(m2)  = p = bp13NJl/d (4.4) 
(recall that p is the number density of the background molecule and b = ( 3 / 2 ~ ) ~ / ~ & ) .  
This result enables us to replace the small distance cut-off parameter d, which 
represents the ‘thickness’ of the molecule, by a macroscopic physical property of the 
molecule. It is similar to the relationship between the end-to-end distance (R’) and the 
step length parameter 1 

(R2)  = 1L. (4.5) 
This enables the microscopic parameter 1 to be related to the macroscopic size of the 

molecule. We also have from (4.4) that (m2)-N. 

4.2. The size of an entangled molecule 

Next we investigate the spatial distance R(s, m) between two points an arc length s 
apart on the molecule entangled with a winding number m. In terms of the generating 
function this is given by 

Using (3.16) for J(h,  s, m) we obtain 
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where I?: (s) = sl( 1 - s / L )  and is the result for an unconstrained Gaussian loop of length 
L. The integrals in (4.7) can be evaluated exactly in terms of the error functions and the 
relevant features of R(s)  can be obtained from the properties of these functions. 

This calculation is presented in appendix 3; however the qualitative features of this 
result can be immediately obtained by approximating the term 

(4.8) r2(s>/(r2isj + g z )  3 exp - g2/r2is). 

~ ~ ( s )   is) exp[m2/~(py2+2)] .  (4.9) 

Then the integrals are readily evaluated to give 

Using (3.10) for the definition of p and y 2  we have that pr2(s) >> 1 for all s, so that we 

(4.9’) 

can write 

R2(s)  = Rz(s)  exp(m2/mz(L, sj)  

where mc(L, s) is an important grouping of the parameters of the problem, given by 

mdL, s) = r(s)P (4.10) 

= {b2a}1i2(p13}”2~Jr/d(L/1)3~4iL/s)1’4. 
The most important features of mc(L, s) are summarised by 

(4.11) 

mc(L, s )  - N3i4(L/s )1’4 .  (4.12) 

In particular it increases as the scale s, over which the size of the molecule is being 
measured, is decreased. Recall (m2> - N  and so m: - N3’2 for s - L, i.e. 

m f  >>(m2) .  (4.13) 

For m << m,(L, s) the molecule is expanded over the Gaussian result R t ( s )  by 

R2(s )=Rt ( s ) ( l  + m 2 / m , 2 ( ~ ,  s)). (4.14) 

This result is the same as that obtained in appendix 3 by evaluating the integrals 
occurring in (4.7) exactly. From the appendix we also have that at m = m,(L, s j  

Rz(s)  = R ~ ( s ) ( N L / s ) ” 4 J f ( l / d ) ” 4 .  

This particular result requires the exact evaluation of the integrals and is lost by the 
approximation (4.8). 

For m >> mc(L, s) we have from (4.10) that 

~ ~ ( s )  = R t ( s )  exp(m2/mz(L, SI). (4.15) 

The exponential term in this result is also obtained with the exact result in appendix 3. 
However, such an expansion of the molecule is clearly unphysical and this is confirmed 
by a calculation of the free energy which tends to infinity as m + mc(L, s). 

The linking number represented by m(L, s) is an important scaling factor for the 
properties of entangled chains: it represents a state of critical entanglement. For 
m < mJL, s )  the molecule still has sufficient configurational freedom to be governed by 
the Gaussian distribution (2.6) of chain bond vectors. The size of the entangled 
molecule is only slightly perturbed from the unconstrained state. Consequently the key 
approximation of this work ( 3 . 9 ,  where we effectively replaced Ir - r’1-l by its average 
value based on Gaussian configurational statistics, is reasonably self-consistent. 
However for m > mc(L, s) the approximation is clearly no longer self-consistent, and 
the constraint becomes dominant in determining a new configurational state of the 
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molecule. To understand the possible nature of the new state when m > mc(L, s ) ,  we 
may first observe that the critical linking number mc(L, s) depends on the arc length s 
over which the size of the molecule is being investigated. From equation (4.12) 

m,(L, s) - N3‘4(L/s)”4 (4.16) 

and is a minimum for the largest length scale of s - L.  As we might well have 
anticipated, we see that as m is increased, the entanglements first affect the large scale 
configurational features of the molecule. This is consistent with them being global 
rather than local constraints on the chain configuration. However, when m > mc(L, L )  
it is still possible to find shorter arc lengths O < s < s *  for which m,(L, L ) < m  < 
mc(L, s*). Consequently over these smaller scales of arc lengths the molecule will still be 
approximately Gaussian, although it will be non-Gaussian on the larger scale s > s*. 

s*  < ~ ( m , / m ) ~  (4.17) 

where we shall denote by m, the minimum value m,(L, L )  at which critical entanglement 
first occurs. 

In the next section we present an initial attempt to understand the configurational 
state of the molecule for m > m,. The arguments are far from rigorous but we shall try 
and show, in accordance with intuition, that for these high entanglements numbers the 
molecule is in a partially collapsed solenoidal state compared with the unconstrained 
random coil state. 

Using (4.16) the condition m < mc(L, s*) can be written as 

4.3. The highly entangled state 

In 0 2 we showed that the weighting factor due to entanglements was given by 

( 2 ~ ~ { r } ) - ” ~  exp - bm2/ W{r)  (4.18) 

with W{r}  given by equations (2.8) and (2.9). This factor is a maximum for those 
configurations {r*}  for which W{r*}= mz and the discussion given in that section 
indicated that such configurations might be solenoidal. However, in the last section we 
established that for m < m, the entropic nature of the random walk statistics was still 
dominant over the entanglement constraint and the molecule adopted an essentially 
random coil configuration. For m > m, the entropic state became non-self-consistent, 
with the size of the molecule expanding as exp m2/m: ,  indicating that the approxima- 
tion procedure whereby we replace the term Ir - r’1-l in the expression (3.5) by an 
average calculated using random coil statistics was going badly wrong. However, we 
also established in the last section that for m > m, we could find smaller arc length scales 
(s - s’) < s*  over which the molecule still behaved like a random coil, and for which this 
present procedure was still valid. This suggests an alternative approximation whereby 
we split the original molecule into r = L/s*  submolecules and treat each of these as 
independent loops but still connected together. The justification for treating the 
molecule as r independent but connected loops is, admittedly, somewhat ad hoc but 
comes close to some realisation of a solenoidal state. 

Each loop of length s*  is, by definition, Gaussian and the maximum winding number 
it can accommodate and still remain Gaussian is m,(s*, s ) .  On a scale s - s*  we have 
from (4.11) that 

(4.19) m,(s*, s*) = m8 = k ( ~ * / l > ~ ’ ~  
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where k contains all the other factors. For the entire molecule on a scale s - L 

mc(L, L )  = m, = k(L/1)3/4 (4.20) 

and, of course, m,* < m,. However, if we have r = L/s* of these Gaussian subloops, and 
consider them as independent, then the maximum winding number that could be 
accommodated is 

mmax = rm,* = ( L / ~ * ) k ( s * / l ) ~ / ~ .  

Using 

s* = ~ ( m / m , ) ~  

we have that 
mmax=m(kN 314 / m , ) = m > m ,  

thus confirming the possibility in this model of accommodating a winding number 
m > m,. We can check the consistency of this picture, of subdividing the entire molecule 
of length L into r independent loops of length s* as a means of accommodating this high 
winding number by an analytic calculation. It proceeds much along the lines we have 
described already. If we divide the chain into r segments labelled by p and denote by sp 
the arc length which lies in the pth segment, i.e. (p - l)s* <sp <ps*,  then the ‘inter- 
action’ function W{c,}, equation (2.8), can be written as 

The additional approximation of treating the molecule as t independent loops consists 
in replacing the tensor T in equation (4.21) by nr(sp) -r (s i ) ]  a,,. The generating 
function for t independent loops subject to an overall winding number m can be written 
as 

(4.22) 

where j ( A ,  m, g )  is the generating function appropriate for one of the loops. We can use 
the result derived in appendix 2, equation (A2.18), but with the replacements L -* s*, 
N -* N* = s* / l  to give 

1 
2T J(A ,  m )  = - J dg exp igm[i(A, m, g)l’ 

(4.23) 

where @* and y* are obtained from f l  and y with the replacements given above, i.e. 

e* = b p i 3 ~ * m d  

with 

s’ = s (modulo s*), where s is the arc length of the original molecule. 
Therefore, 

(4.24) 

(4.25) 
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The calculation of the size of the molecule proceeds exactly as before and once again we 
find a critical winding number m f  given by 

m f  = y*@ 

Using (4.24) 

m f  = (ab2 * p13 * l/d)1/2(rn3)1/4(s*/s’)1/4 

mX = P 4 m , ( ~ ,  s ) ( s * / s ’ ) ~ / ~  

(4.26) 

(4.27) 

where we have used (4.11) for the critical winding number mc(L, s) of the molecule in 
the approximately Gaussian state when m m,. For s -L, s‘-s* we have m,* = 

m,. Thus by splitting the molecule into r independent subloops as a way of 
accommodating the winding number m > m,, we find that the critical winding number 
threshold is raised by the factor r1/4. Consequently we can choose the number of loops 
r so that m never exceeds m,* thus ensuring that the subloops remain essentially 
Gaussian. The condition m < m,* gives r > (m/m,)4 which is entirely consistent with 
r > L/s* using (4.17) for s* and confirms our intuitive picture given earlier. 

The size of the entire molecule is the same as the size of any of the subloops. Since 
m < m,*, the subloops are always approximately Gaussian; consequently 

R2 - Is* - lL/r - lL(mc/m)4. 

Therefore 

R ~ / I L  = (m,/m14< I .  (4.28) 

The molecule is partially collapsed by the high entanglement constraint and only 
remains Gaussian on the scale s < s*. 

5. Conclusion 

The results obtained in 0 4 are the major results of the paper. For a polymer molecule of 
N links of average length 1 entangled with an infinitely long background molecule we 
have identified over an arc length scale s a critical winding number 

m,(L, s) - p l  3 N 314 ( L / s ) ” ~  

where p is the number density of the background molecule and L = NI. For m m, the 
original entropy of the chain still dominates over the winding number constraint, 
resulting in an approximate random walk configuration. For m > m,, the constraint 
dominates and a partially collapsed solenoidal state seems most likely. Since the 
winding number is a global constraint, affecting the largest scale features of the 
molecule first, we can still find in the collapsed state shorter arc lengths s <s* over 
which the molecule is still in a random coil configuration. 

We have treated the simplest situation of two entangled chains and dealt only with 
the configurational properties of one of the chains. In a future publication we shall 
consider the situation of many entangled chains and, using the same approximations 
adopted in this paper, calculate the mechanical properties due to the entanglements. 
The results will be applied to a discussion of the modulus of rubber and of molten 
polymers in the plateau region. 
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Appendix 1 

Evaluation of 

(Al.l)  

where the averaging is over a Gaussian distribution of bond vectors. Equation (Al.  1) 
can be parametrised by 

and since we are dealing with Gaussian distributions 

(exp i4(r - r f ) )  = exp-iq’((r - rr )2)  

and (A1.2) can be integrated to give 

Appendix 2 

Evaluation of the path integral 
L 

N-’ ds ds’i(s).r(s’)(s-s’)+iA 0 I ( s ) & ~ ( s ) d s  I 21 IoL 

(A1.2) 

(A1.3) 

(Al.4) 

(A2.1) 
0 

where X is the normalisation factor (2~1/3)~”’  and 

h(s)=S(s)+g’K[ls(l -s/L)]-’” (A2.2) 
with 

K = (1/2T)3/2~p13+ 

The exponent in equation (A2.1) can be diagonalised by the normal mode trans- 
formation i ( s )  -* +,, where 

m 

i ( s )  = r,, exp(2lrins/~) 

i,, = L-’ 

,,=--oo 

L 

ds r ( s )  exp(-2lrins/L). (A2.3) 
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Then (A2.1) becomes 

where 
L 

h, = lo ds h(s) exp(-21rins/L) 

8, = lo ds O12(s) exp(-21rins/L). 

and 
l L  

The path integral can now be done to give 

I o n  I 2  3/2 

X-' n (g) exp(-h21L/b) 1 -. 
n n hn 

This can be written as 

exp n # O  (-$lnh,,--- 

with 
h, = 1 + g2K(N/n)li2 

and 
1 1 2 ~ m  le,l =- T s i n  -(s1-s2). 

21r m L 

(A2.4) 

(A2.5) 

(A2.6) 

(A2.7) 

(A2.8) 

The remaining difficulties to be overcome before we achieve an explicit evaluation of 
this path integral occur in performing the sum over n in (A2.6). We consider first 

A = 1 In hn = c ln[l +g2K(N/n)'/2]. 
n #O n #O 

(A2.9) 

If the sum is replaced by a integral over dn, the integration can be done to give 

(A2.10) 
( l+g2K(N/n)'/2)+ln[l+g2K(N/n)''2]+ 1 

g 'K (N/ n ) "* g4K2N/n g2K(N/n)' 
A = g4K2N - In 

The upper limit n + CO gives a divergent answer. Normal modes with n large correspond 
to small distance scales and so if we choose a cut-off distance s - d then this is equivalent 
to a cut-off at large values of n - L/d = Nl/d. The occurrence of this divergence is due 
to the singular nature of the entanglement interaction W when r ( s ) = r ( s ' ) .  By 
introducing a 'thick' polymer we can avoid this singularity, correspondingly we consider 
d to be some measure of the thickness of the polymer. With this cut-off procedure the 
integral becomes 

N{-g4K2 ln[l + (g2K)-'(l/d)'/2]+ (I/d) In[l +Kg2(d/1)"2]+g2K(I/d)2}.  (A2.11) 

As d -* 0, the leading term is 2g2KN(I/d)'l2. Consequently the first term in (A2.6) can 
be written as e x p ( - 3 g 2 K N q 4 .  The second term to be evaluated is 

Ien  t 2  B =  1 -. 
n # o  hn 

(A2.12) 
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Using (A2.8) for I&12 and (A2.7) for h, 

1 "dn sin2 m s l Z / L  
277 7 1 +g2K(N/n)1/2 

B = -  J, (A2.13) 

where s12 = s1 - s2. 
Unfortunately this integral cannot be evaluated in any closed form. This is 

particularly inconvenient as, in order to complete the calculation, we need to know B as 
a function of g2. The integral is a monotonically decreasing function of g2 and at g2 = 0 
and for g2+ CO it can be exactly evaluated: 

at g 2 = 0  

as g2+ CO 

We therefore approximate the integral by the form 

where 

y2(s12) = ( L / N S ~ ~ ) ' / ~ / ~ K .  

Hence equation (A2.6) for the path integra1 can be written as 

where 

0 = bKN(l/d)'" = ( 3 / 2 ? ~ ) ~ / '  & ~ l ~ N ( l / d ) ' / ~ .  

Appendix 3 

Evaluation of 

JTm dg exp(-$fig2 + igm)(l + g2/y2)-' R '(3, m) = I?; (s) 
dg exp( -$figz + igm) 

By symmetry, the integral in the numerator is 

and is evaluated in Gradshteyn and Ryzhik (1980) as 

f r y  exp&!y2[2 cosh my -exp(-my)@(yJP/2- mJ1/2p)  

(A2.14) 

(A2.15) 

(A2.16) 

(A2.17) 

(A2.18) 

(A2.19) 

(A3.1) 

(A3.2) 

(A3.3) 
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@(x) is the probability integral 

2 "  
@(x) = -= I eVf2 dt. 

JT 0 
(A3.4) 

By writing 2 cosh my = exp(my)+exp(-my) equation (A3.3) can be rewritten as 

$try exp(-m2/2p)[exp(x:)(l -@(x+))+exp(x?)(l -@(x-))] ( A 3 3  

x* = yJ@l* m/yp). (A3.6) 
where 

The integral in the denominator of (A3.1) is straightforward and gives 

J2.rrlp exp(-m2/2~).  (A3.7) 

Therefore (A3.1) can be written as 

R2(s, m)/R;(s) =&$yG(u(x+)+ u(x-)) (A3.8) 

u(x) = exp(x2)(1 -@(XI). (A3.9) 
where 

For m -K yp, x+ - x- - y d s .  
Using the definitions (3.11) for y and 0 we have that y f i -  N1l4 and so x+ >> 1. 
Asymptotically U (x) - (Jtrjx I)-' and 

Consequently 

Form=yp ,x+=y->>l  andx-=O. Sinceu(O)=l,wehave 

(A3.10) 

(A3.11) 

(A3.12) 

and for m >> yp the variable x- becomes negative and large. @(-x) = -@(x) and 
U(-x) -exp(x2). Therefore 

(A3.13) 
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